1 - Chemical equations (part 1) In mathematics, an **equa**tion shows a relationship between the left- and right-hand sides, most of the time **equa**lity. This is shown using the = sign. Chemical equations, on the other hand, show the **transformation** of a substance (in other words, a chemical reaction). A reaction is shown with the arrow symbol \longrightarrow , with the starting materials ("reactants", "reagents") on the left, and the products on the right: reagents --- products #### 1. Using the arrow sign Your first skill with a chemical reaction lies in transforming a verbal description into a chemical equation. Prerequisite: common chemical names, state symbols. | , 0, | equisite. Common chemical names, state symbols. | |------|---| | (a) | Two bromide ions react with chlorine (Cl ₂) to give two chloride ions and bromine. | | | | | | | | | | | (b) | In an aqueous solution, nitric acid combines with sodium hydroxide to give aqueous sodium nitrate and water. | | | | | | | | | | | (c) | Solid calcium carbonate ${\rm CaCO}_3$ reacts with two units of hydrochloric acid to produce water, carbon dioxide, and calcium chloride ${\rm CaCl}_2$ solution. | | | | | | | | | | ### 2. Adorning the arrow sign A chemical reaction may only work when certain conditions are met. For example, a reaction may happen only when it is heated. These conditions are often specified above or below the arrow. Here are some common decorations: - 2 - **Temperature** $$X \xrightarrow{T:100^{\circ}C} Y$$ **Time** $X \xrightarrow{t:5h} Y$. Case-sensitive! **Reflux** Reflux means boiling the solution without it evaporating (how?? we'll show you later). This is shown with a symbol Δ : $X \xrightarrow{\Delta} Y$ **UV light** $X \xrightarrow{uv} Y$ or $X \xrightarrow{hv} Y$. You will see what the symbols hv means in Topic 2. Catalyst $X \xrightarrow{c:MnO_2} Y$ or $X \xrightarrow{cat:MnO_2} Y$. A catalyst doesn't get consumed so it is not part of the reaction. Solvent $$X \xrightarrow{s:H_2O} Y$$ Prerequisite: common chemical names, state symbols, reaction arrow symbol. | (a) | At room temperature, | two bromide ions rea | act with chlorin | e (Cl ₂) to give tv | vo chloride ions | and | |-----|----------------------|----------------------|------------------|---------------------------------|------------------|-----| | | bromine. | | | 2 | | | |
 | | |------|--| |
 | | | (b) | Aqueous hydrogen peroxide H | O2 decomposes into v | water and oxygen gas O, | when it is heated | |-----|-----------------------------|----------------------|-------------------------|-------------------| | | to 90 °C. | 2 2 | 2 | - | |
 | | |------|--| |
 | | (c) Aqueous hydrogen peroxide H_2O_2 decomposes into water and oxygen gas O_2 when manganese(IV) oxide $MnO_2(s)$ is added as a catalyst. |
 | | |------|--| |
 | | | (d) Ethanoic acid reacts with methanol to give $CH_3COOCH_3(aq)$, but only after being heated to reflux for 2 hours with 0.1 mol dm ⁻³ sulphuric acid as a catalyst. | |---| | | | | | | | | | Balancing an equation | | When you first write the equation, there may be different number of atoms on either side (see you unbalanced H_2O_2 reactions above). Because chemists only <i>transforming</i> but not <i>creating</i> matte (that's God's work), we must end with the same number of particles we start with. The skill of doing this is called "balancing an equation", and is an iterative process of changing the numbers in fron of the chemical species (the "coefficients"). | | A general rule of thumb is to balance the atoms of different elements in the following sequence: | | 1. Atoms that are present in only one reactant and product | | 2. Oxygen atoms | | 3. Hydrogen atoms | | Explicitly write down the number of atoms on both sides. This will help you prevent silly errors. | | Later on there are cases where you need fractional coefficients, but for now, balance equations with whole numbers. | | Prerequisite: common chemical names, state symbols, reaction arrow symbol. | | (a) $AI + O_2 \longrightarrow AI_2O_3$ | | | | | | | | (b) $CH_4 + O_2 \longrightarrow CO_2 + H_2O$ | | | | | - 3 - 3. | (c) | $N_2 + H_2 \longrightarrow NH_3$ | |-----|---| | | | | (d) | $Fe_2O_3 + CO \longrightarrow Fe + CO_2$ | | | | | (e) | $SeCl_6 + O_2 \longrightarrow SeO_2 + Cl_2$ | | | | | (f) | $SnO_2 + H_2 \longrightarrow Sn + CH_2O$ | | | | | (g) | $KNO_3 + H_2CO_3 \longrightarrow K_2CO_3 + HNO_3$ | | | | #### 4. Balancing a combustion equation There is no universal method to predict what the products of a reaction is. As such, you will always be given at least some of the products. However, for **selected** reactions you can predict what the products and missing reagents are. Two classes you will encounter includes: **combustions** When substances are burnt. O_2 is always a reagent, and for **complete** combustion the products are CO_2 and H_2O . | neu | tralization When acids react with bases. | |-----|--| | (a) | Balance the reaction for the complete combustion of C ₂ H ₆ | | | | | | | | | | | (b) | Balance the reaction for the complete combustion of benzene. | | | | | | | | | | | | | | (c) | Balance the reaction for the complete combustion of methanol. | | | | | | | | | | | | | | (d) | Balance the reaction for the complete combustion of $\rm H_2$. How is this reaction an exception to the general rule of combustion? | | | | | | | | | | ## 5. Balancing an acid-hydroxide neutralization equation | Aqueous strong acids like $H^+Cl^{(aq)}$ reacts with hydroxides like $Na^+OH^{(aq)}$ to give (1) (2) a salt. Here you need to identify the salt from the spectator ("leftover") ions: | water and | |---|-----------| | $H^+Cl^{(aq)} + Na^+OH^{(aq)} \longrightarrow H_2O_{(l)} + Na^+Cl^{(aq)}$ | | $$H^+Cl^-_{(aq)} + Na^+OH^-_{(aq)} \longrightarrow H_2O_{(1)} + Na^+Cl^-_{(aq)}$$ | (a) | Write a balanced | l equation fo | r the reaction | between i | nitric acid | and sodium | i hvdroxide. | |-----|------------------|---------------|----------------|-----------|-------------|------------|--------------| |
 | |------| | | |
 | | (ŀ | Write a balance | ed equation for the | e reaction between si | Johuric acid and | potassium hydroxide. | |----|-------------------------------------|---------------------|-----------------------|-------------------|-----------------------| | 11 |), vviito a balanto | o cquation for the | , icaciion between s | alphanic acid and | polassiani nyarokiac. | |
 | |------| |
 | | |