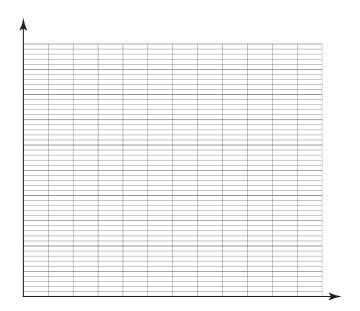
7 - Exploring Features of a Dynamic Equilibrium

We extend the dice simulation found at https://www.jon.hk/app/kineqmsim/ to explore some features of a dynamic equilibrium. Choose the *competition* tab. You will need to reset the simulation in every part (unless otherwise instructed).

1. Microscopic vs Macroscopic

(a)


	a a simulation with the following conditions: dieCount = 3000, initialRem 00, forwardConditions = 3, backwardConditions = 1, mystery = 500.	nain = 3000, dieSide
i.	What is the average red:gray ratio between 140-160 rounds?	
		i
II.	What is the average red:gray ratio between 200–220 rounds?	
iii.	What is the average red:gray ratio between 300-320 rounds?	ii
		iii
iv.	What do you predict will be the average red:gray ratio between 10000-	-12000 rounds?
		iv
	Look at the graph (upper panel). When does the graph (of bulk concenting"?	ration) "stop chang-
		V
vi.	Look at the individual dice (lower panel). When does the individual dice	e stop changing?
vii	What have you learnt about a system at equilibrium?	vi
VII.	what have you learnt about a system at equilibrium:	

2. Starting conditions

(a)	Run a simulation with the following conditions: dieCount = 500, initial remain = 500 , dieSide = 100, forwardConditions = 30, backwardConditions = 10, mystery = 500. What is the equilibrium red:gray ratio?
	(a)
(b)	Run a simulation with the following conditions: $dieCount = 500$, $initial\ remain = 250$, $dieSide = 100$, forwardConditions = 30, backwardConditions = 10, mystery = 500. What is the equilibrium red:gray ratio?
	(b)
(c)	Run a simulation with the following conditions: $dieCount = 500$, $initial\ remain = 0$, $dieSide = 100$, $forwardConditions = 30$, $backwardConditions = 10$, $mystery = 500$. What is the equilibrium red:gray ratio?
	(c)
(d)	How does the equilibrium red:gray ratio depend on the initial conditions?

3. Leakage

Run a simulation with the following conditions: dieCount = 500, initialRemain = 500, dieSide = 100, forwardConditions = 30, backwardConditions = 10, mystery = 500. Let this run to 300 rounds and pause the simulation.

- (a) Sketch a graph of the simulation.
- (b) Imagine that each round we remove five dice. Sketch how this would affect the simulation.
- (c) At which round would an equilibrium be established?

(d) What have you learnt about the prerequisite of an equilibrium?

4. Rates ratio and product ratio

Starting with dieCount = 1000, initial remain = 1000, dieSide = 100, mystery = 500.

(a) Keeping backwardConditions = 10, run a series of simulations with forwardConditions at 2, 5, 10, 20, 30. Let these systems to come to an equilibrium, and tabulate your data.

Table 1 Record of rate simulation

Expt	Forward	Backward	F:B ratio	Eqm red:gray ratio
1	2	10		
2	5	10		
3	10	10		
4	20	10		
5	30	10		
6	50	10		

(b) What is the relationship between forward/backward conditions and the equilibrium red:gray ratio? Give evidence to support your claims.

5. Rates and product ratio

Starting with dieCount = 1000, initial remain = 1000, dieSide = 100, mystery = 500.

(a) Run a series of simulations with the following conditions. Let these systems to come to an equilibrium, and tabulate your data.

Table 2 Record of rate simulation

Expt	Forward	Backward	F:B ratio	Eqm red:gray ratio
1	2	2		
2	3	3		
3	4	4		
4	10	10		
5	20	20		

(b) If we keep the forward:backward ratio constant, but change their magnitude, how does this affect the equilibrium red:gray ratio? Give evidence to support your claims.

` '	A catalyst increases the rate of both the forward and backward reactions. How would it change the equilibrium ratio of the products?

.....

6. Summary

Summarize the features of a dynamic equilibrium that you have observed in this series of simulations.