6 - Simulation with Dice

Your group starts with 100 dice, and will carry out ten rounds with them. In each round you will roll all the dice. All that shows a 1 will be discarded.

First predict the results, then roll the die. You have 10 minutes.

Table 1 Record of die simulation

	Predictions	Actual	Difference
0	100	100	100-100 = 0
1			
2			
3			
4			
5			
6			
7			
8			
9			
10			

1	(a)	How	did	VOL	make	vour	nred	liction	2
1.	(a)	1 10 00	ulu	٧Uu	IIIane	voui	טוכט	IIGUIOI	I :

(b)	What chemical / physical system(s) show a constant probability of change like these die?	(You
	may want to come back and add to the list as you discover them.)	

(c) Graph your data.

(d) Why is your prediction not **exactly** spot-on? What would happen if you repeat this with 5,000 die?
